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Hypothetical graphite structures with negative
gaussian curvature

By A. L. MAackay aND H. TERRONES

Department of Crystallography, Birkbeck College, Urivii~ily of London, Malet Street,
London WC1E 7HX, UK.

We consider the geometries of hypothetical structures, derived from a graphite net
by the inclusion of rings of seven or eight bonds, which may be periodic in three
dimensions. Just as the positive curvature of fullerene sheets is produced by the
presence of pentagons, so negative curvature appears with a mean ring size of more
than six. These structures are based on coverings of periodic minimal surfaces, and
surfaces parallel to these, which are known as exactly defined mathematical objects.
In the same way that the cylindrical and conical structures can be generated
(gcomctrloally) by curving flat sheets so that the perimeter of a ring can be identified
with a vector in the two-dimensional planar lattice, so these structures can be related
to tessellations of the hyperbolic plane. The geometry of transformations at constant
curvature relates various surfaces. Some of the proposed structures, which are
reviewed here, promise to have lower energies than those of the convex fullerenes.
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1. Introduction

The characteristics of the process of X-ray crystal structure analysis have led to an
undue emphasis on classically crystalline materials to the neglect of organized
structures which do not give simple diffraction patterns with sharp spots:

Gradually, even in the inorganic field, curved layers have become recognized as
essential structural components. These were first recognized in asbestos and
halloysite (Whittaker 1957; Yada 1971), where concentric cylinders and spiral
windings of silicate sheets were disclosed. We can now begin to assemble the basic
geometry of such curved structures under the rubric of ‘flexi-crystallography’. This
might be part of what de Gennes (1992) has called the study of ‘soft matter’, the
main characteristics of which are complexity and flexibility.

We assume here that we are discussing graphite layers, but most of the geometry

,\1//1%5;1 applies to other layers, such as silicate sheets, boron nitride or boric acid, with
~~ hexagonal or square or lower symmetry. It also applies to lipid bilayers, which occur
2 in vesicles (Fourcade ef al. 1992) and in many biological structures. The role of liquid
P > crystal structures as proto-organelles was recognized by Bernal (1933) and became
@) ~ part of his programme for generalized crystallography.
e g The structural components which we will chiefly consider here are the hexagonal
O sheets of three-connected sp® carbon atoms found in graphite. In graphite itself these
T O sheets are stacked in hexagonal sequences (repeating every two sheets) or
= w rhombohedrally (repeating every three sheets) or in disordered stacking referred to
22
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114 A. L. Mackay and H. Terrones

as turbostratic. The dimensions of the hexagonal graphite structure (with two layers,
3.4 AT apart) are: a = 2.47 A, ¢ =6.79 A so that the C—C distance is about 1.42 A.

2. Tessellations

In a planar hexagonal lattice of lattice constant a, the distances from one lattice
point to another are given by a(h2+ hk+ k?): where A and k are the steps along the
two hexagonal axes (whlch are here taken to be 60° apart: if they are taken as 120°
apart, then a(h?—hk+ k?)3). Starting from one lattice point, a hexagonal super-lattice
of side a(h®+hk+ k%) can be marked out where all its points lie on points of the
original lattice. Each cell of the larger lattice will contain (h*+hk+k*) = 1" of the
smaller cells. This sequence (h*+hk+k?*) = T runs 1, 3,4, 7,9, 12, 13,.... This kind
of tessellation has long been known in mineralogy where a fraction of the atoms in
a hexagonal lattice may be vacant or substituted by other types of atom. The
vacancies or substituting atoms are arranged symmetrically as far apart from each
other as possible.

If A > k and &k # 0 then the super-lattice is unsymmetrically disposed with respect
to the original lattice. If the lattice is turned over and superimposed on itself so that
the super-lattice points coincide, then we have a coincidence site lattice (in which a
fraction 1/(h*+hk+k?) of the original lattice points coincide). Coincidence site
lattices can also be found in three dimensions, particularly for cubic lattices.

We will here consider curved sheets ; two-dimensional manifolds. In a curved sheet,
at cach point there are two principal curvatures, &, and k,. The mean curvature H
is thus §(k, +k,) and the gaussian curvature K is k, k,. An ellipsoidal shell thus has
positive gaussian curvature, a hyperbolic sheet has negative gaussian curvature and
a cylinder or a cone has zero gaussian curvature. On a curved sheet the perimeter of
a small circle of radius 7 is 2171 —3K7* + O(r*)). Thus for negative gaussian curvature,
as on a saddle surface, there is excess area and perimeter, as compared with a plane
circuit and for positive gaussian curvature, as on the sphere, the area and perimeter
of a circuit are less than for a plane.

3. Cylindrical lattices

The cylinder may be developed from the plane, meaning that a sheet can be rolled
up, without local distortion, to become a cylinder. Gaussian curvature is constant
under such bending.

For a circular cylinder of radius r, K, = 1/r and K, =0, so that H = 1/2r and
K = 0. A lattice point may be marked at one identifiable point in the tessellation of a
plane pattern and all identical points are then similarly marked (identical meaning
also identical in orientation of surroundings). Cylindrical lattices can readily be
handled by taking a cylindrical projection where the surface is unrolled to give a
plane sheet of width 2nr. In rational lattices further lattice points lie exactly above
others with a displacement parallel to the axis of the cylinder. With irrational lattices
a second lattice point never occurs exactly above the first and equalization of bond
lengths tends to generate a coiled coil. The theory of diffraction from helices of both
types has been developed by Klug et al. (1958).

The dense packings of equal spheres around a cylinder have been examined by
Iirickson (1973) who derived useful formulae for their generation. These can be used

+1A=10""m = 10" nm.

Phil. Trans. R. Soc. Lond. A (1993)
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Hypothetical graphite surfaces 115

to produce the corresponding graphite nets by omitting the spheres at, the centres of
rings of six. Clearly, not all sphere packings correspond to graphite nets.

Iijima and his group at NEC (lijima 1992; Ajayan & lijima 1992; lijima et al.
1992) have observed hollow cylinders of graphite by high-resolution electron
microscopy and by electron diffraction, and have demonstrated the orientation of the
lattice with respect to the axes of the cylinders. Tubes often consist of five or more
layers, probably separate tubes but possibly spirals. Single layer tubes of diameter
8 A (the diameter of the Cg, sphere) were also seen. Conical sections were found,
joining tubes of different diameters. If the cylindrical sections are flattened, then it
is not necessary to postulate lines of 5-7 dislocations in the conical sections which
may be seamless, the sheet edges joining at 60°. There must be at least one ring of
7 or 8 where the cone joins the smaller cylinder. Presumably successive graphite
sheets in coaxial cylinders cannot be in register as in plane sheets, while their
perimeters increase by 2m x 3.4 A (about 8.7 repeat units) for each layer. There are
now several studies of the electronic properties of such tubes.

Tubes of much larger diameter were earlier produced by Tibbetts et al. (1987) at
GEC in America.

4. Regular and semi-regular polyhedra

A regular polygon is a planar polygon with all its sides of equal length, all its
inter-edge angles equal and all its vertices symmetrically equivalent. If stellated,
edges may intersect each other. For example the pentagram is the stellation of the
pentagon in which, tracing the edges round the centre, more than one circuit is
necessary to return to the starting point. The regular polygons of order 5, 8, 10 and
12 have each only one stellation, namely {5/2}, {8/3}, {10/3} and {12/5}. Other orders,
such as 7, have more than one stellation. It is probably no coincidence that quasi-
crystals may have symmetry axes of orders 5, 8, 10 and 12 as compared with the axes
of order 2, 3, 4 and 6 (for which the corresponding polygons have no stellations)
allowable in real crystals. Stellation might be considered as a first step in the
generalization of the ¢oncept of axis of symmetry where coincidence occurs only
after two or more rotations about the axis, recalling a Frank-Reed source.

The five regular polyhedra (the tetrahedron, cube, octahedron, dodecahedron and
icosahedron) each have faces which are all the same regular polygon and vertices
which are all symmettically equivalent. The 13 semi-regular or archimedean solids
are convex polyhedra which have all their faces regular polygons of two or more
kinds and all vertices symmetrically equivalent. These polyhedra can be designated
by the nunmbeérs of faces meeting at a vertex. For example the truncated icosahedron
of (g is 5.6% This figure is also obtained by deep truncation of the dodecahedron,
truncdtion being, of course, a mathematical rather than a physical process. It is
coriventional to exclude the prisms N.4% from this definition. There is also a large
number (53) of stellated regular and semi-regular polyhedra with which we will not
be concerned here.

5. Euler’s law

For a convex polyhedron, topologically like a sphere, with F faces, V vertices and
E edges, Euler’s law states that V—E +F = 2. A sphere has genus zero and if another
more complex polyhedron can be deformed to take the shape of a sphere with N
handles, then it has the genus N. This is a useful, but not a complete, characterization

Phil. Trans. R. Soc. Lond. A (1993)
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116 A. L. Mackay and H. Terrones

of shape. Knot theory, which is still developing, is needed for a better classification.
A torus has the genus 1 and the P-surface inside a cubic unit cell (see below), has the
genus 3. The imposition of periodic boundary conditions is equivalent to putting
three handles across outside the cube connecting opposite faces. The more general
expression of Kuler’s Law in three dimensions is V—E +F = y, where y is the Euler
characteristic and y = 2—2¢g, where g is the genus. Thus, for a torus, V—-E+F = 0,
and for a cell of the P-surface, V—HE+F = —4.

For a network of the graphite type, assuming that there are only pentagons,
hexagons, heptagons or octagons, each edge is shared by two polygonal faces and
each vertex is shared by three polygons. If NV, is the number of polygons with n sides
and n vertices, we have

F =N,+Ng+N,+N,,
28 = 3V = 5N+ 6N+ 7N, +8N,.
Putting this into Euler’s expression we have
Ny,—N,—2N; = 6y = 12(1—g)

so that for a torus N, — N, — 2N, = 0. For a sphere N;—N,—2N; = 12 and thus in such
a figure, if there are no heptagons or octagons, there can only be hexagons, in an
indefinite number, and 12 pentagons. Since V = 20+ 2N, the number of vertices
must be even. For the unit cell of the P-surface N,—N,—2N, = —24. Thus, if there
are no pentagons, 24 N, or 12 Ny are necessary.

The coneept of polyhedra can be extended to include infinitely periodic regular and
semi-regular polyhedra by allowing non-convex arrangements. Many of these have
been discussed by Wells (1977). The simplest is made up of hexagons and squares and
all vertices are equivalent, each having the symbol 6.4%, meaning that in going round
a vertex we meet a hexagon and three squares. This polyhedron divides all space into
two congruent regions and is a polygonal version of the P-surface.

6. Infinite polyhedra

For the convex semi-regular polyhedra the sum of the face angles meeting at a
vertex adds up to less than 360° and, if there are N vertices the N deficits total 720°.
The vertex sum divided into 720° is an integer or, for a stellation, a fraction.

We may ask what combinations of three faces (pentagons, hexagons, heptagons,
etc.) can meet at a vertex under the condition that all vertices should be
symmetrically equivalent. It can readily be seen that, if any of the faces has an odd
number of sides, then the other two polygons must be the same (as two different
polygons cannot alternate around an odd axis). It is more difficult to enumerate
vertices at which four or more faces meet but, since we are here considering graphite
sheets, this is not necessary.

For the infinite semi-regular polyhedra the vertex sums are greater than 360°,
depending on the genus g, the total excess being 4m(g—1). If the polyhedron is
stellated the genus may be fractional, but we are not concerned with this case.

We may consider the tessellations either as packings of pentagons, hexagons, ete.
meeting three at a vertex, or as the repetitions of asymmetric triangular units. For
example, the regular tessellation by heptagons with the symbol 7% (for three
heptagons meeting at a vertex) is equivalent to the tessellation by triangles 14.6.4 of
angles im, im, im. By enumerating all the possibilities we find that the combinations
8.62, 8%2.5, 7%, 7.6% have vertex sums a little above 360°.

Phil. Trans. R. Soc. Lond. A (1993)


http://rsta.royalsocietypublishing.org/

,\
A
' . \
ya N

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A

i \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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7. Deltahedra

A deltahedron is a polyhedron, each of the faces of which is an equilateral triangle.
Deltahedra include the tetrahedron, the octahedron, the icosahedron and many less
regular figures, such as the pentagonal bi-pyramid, the 4m dodecahedron, etc. Given
a two-dimensional hexagonal lattice, by cutting away one, two or three sectors
around a hexagonal point, it can be folded to cover a deltahedron. Thus, by cutting
out sectors at the points of a larger super-lattice, a pattern of hexagonal symmetry
can be mapped on to the surface of a deltahedron, so that 7" units lie on every face.
The most important case is that of the icosahedral shells found for many viruses.
Albrecht Diirer seems to have invented the construction of polyhedra by folding up
cardboard and built the icosahedron truncum in this way. D’Arcy Thompson (1925)
generalized the folding method and showed that all the convex semi-regular solids
could be constructed by folding plane tilings. The corresponding process of inserting
sectors to raise the order of an axis, for example, from six to seven, can be used to
generate the infinite polyhedra with concavities. Possible graphite meshes can be
conveniently derived from some of the dense packings of circles on a surface.
Erickson (1973) has given formulae for many of the cylindrical packings and
Townsend et al. (1992) have used this concept in decorating irregular surfaces.

8. Fullerenes

Fullerenes are symmetrical closed convex graphite shells, consisting of 12
pentagons and various numbers of hexagons, for which K > 0. Some are tessellations
of the icosahedron. They have been illustrated recently by Smalley & Curl (1991) and
by many others so that it is not necessary to discuss them further here. Being
topologically equivalent to the sphere they have genus 0 and faces+ vertices =
edges+ 2. Further, N,—N,—2N, = 12.

9. Periodic minimal surfaces

Minimal surfaces are surfaces with H = 0 so that K, = — K, and K < 0. They are
thus saddle-shaped (anti-clastic) everywhere except at certain ‘flat points’ which are
higher order saddles (for example the ‘monkey-saddle’ which has symmetry 3). A
surface may be minimal either because, as for a soap-film spanning a non-planar loop
of wire, it minimizes its energy by having a minimum of area or, for a membrane
surface made of lipid molecules, because it minimizes the splay energy. The
mathematical condition for a surface to have zero mean curvature is that the
divergence of its unit normal should be zero. The splay energy is the integral of H?
over the area. Surfaces for which the integral of H? is a minimum are called Willmore
surfaces. ‘

It is not possible to construct an infinite surface with constant negative gaussian
curvature. Such a surface with a constant, imaginary radius of curvature defines the
hyperbolic plane H? (the surface of a sphere being designated as §%).

However, H. A. Schwarz found before 1865 that patches of varying negative
gaussian curvature and constant H = 0 could be smoothly joined to give an infinite
triply periodic surface of zero mean curvature. About five different types were found
by Schwarz and Neovius, but now about 50 more have been described (Schoen 1970
Fischer & Koch, 1989 a-e).

Phil. Trans. R. Soc. Lond. A (1993)
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05

Figure 1. The P-surface, found by H. A. Schwarz. If the two sides are the same, the space group is
Im3m: if different, then Pm3m. It corresponds closely to the zero equipotential surface in CsCl.

One case is of a tetrahedral frame of four rods over which a soap-film may be
placed to give a saddle-shape. Such pieces, each of eight asymmetric units, can be
joined smoothly with diad axes along the rods to give a continuous surface, the D-
surface, which is triply periodic and which divides space into two congruent regions.
This surface can be imagined in various ways; one way is to take the structure of
diamond and to inflate the bonds into tubes until the space between the tubes is
congruent with the space inside the tubes. It thus has the symmetry of the cuprite
(‘double diamond type’) structure of space group Pn3m. However, the P-surface
shown in figure 1 is the simplest to apprehend and we will preferentially illustrate its
variants.

Two classes of periodic minimal surfaces may be distinguished. By examining all
the asymmetric regions in the 230 crystallographic space groups, Fischer & Koch
(1989a—¢) enumerated completely all the ‘balanced surfaces’, where, as in the D-
surface, the two sub-spaces are congruent. There is also an indefinitely large class of
unbalanced surfaces where the two subspaces are not congruent. On minimal surfaces
every point has zero mean curvature and non-positive gaussian curvature but at
certain points, flat points or umbilics, both principal curvature are zero and the
surface is completely determined once the orientation of its normals at the flat points
is given. Surfaces may again be divided into those for which the flat points are
symmetrically equivalent and those for which this is not so. Self-intersecting
surfaces, which are at present not of physical importance, have been neglected.

Exact procedures for determining the shapes of the periodic minimal surfaces are
available and have been described elsewhere (Nitsche 1975, 1989; Terrones 1992;
Fogden & Hyde 1992a,b). They involve representing each point on the surface by a
point in the complex plane. The coordinates x, ¥, z of a point in the surface are related
to this complex number w by stereographic projection from the Gauss sphere, on
which the normal directions to each point on the surface are marked, and thence to
the actual points in space by the Weierstrass integrals which can be computed being,

Phil. Trans. R. Soc. Lond. A (1993)
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in the simpler cases, related to elliptic integrals. Each surface has a characteristic
Weierstrass function R(w) (Fogden & Hyde 1992a, b) although in some cases this
is excessively complicated but, for example, Schwarz’ D-surface has R(w) =
(1—140* + 0®).

Certain surfaces are related and, for the D, P and G surfaces, the coordinates of one
afe obtained from those of another by multiplying the complex number w by exp(if)
where 6 is the Bonnet angle. The catenoid has the simplest Weierstrass function
R(w) = 1/w and the helicoid has the same function but multiplied by —i so that one
sutface can be bent from one to the other without local distortion (change of metric).
1f the infinite surfaces are continuous, then they would have to pass through each -
other, but if we consider only discrete atoms lying in conceptual surfaces, then this
constraint does not apply. As an equivalent, this Bonnet transformation can be seen
8§ the twisting of a hexagonal patch (having three vertices turned up and three
down: the ‘monkey saddle’). Such patches in a continuous surface are separated,
twisted and then joined together again differently.

Hyde & Andersson (1986) have explained martensitic transformation in these
terms and provided some evidence for it. Even if this is eventually not substantiated,
the idea is certainly molto ben trovato and merits development. It is a remarkable
materialization of a hidden phase factor.

Surfaces may found by finite element analysis methods where the curvature of
each element of surface is brought iteratively to the correct value. More general
energy functions can be imposed in this way. Exact minimal surfaces are merely
particular idealizations and their value lies in their being two-dimensional manifolds
which have metrics different from that of the euclidean manifold of the plane.

Surfaces can also be represented as the zero equipotentials between positive and
negative ions arranged as in a crystal. Periodic minimal surfaces are often close to the
zero equipotentials in real crystal structures.

Mathematical approximations to the periodic minimal surfaces can be constructed
from terms which are each the result of adding symmetry-related sinusoidal density
waves for the appropriate symmetry group, and then taking the nodal surface; the
boundary between regions of positive and of negative density. The waves that
correspond to a face-centred figure in real space are the body-centred terms in
reciprocal space, namely :

Cy+ C110(3—Z cos 2nx cos 21y) + Chyo (1 — X cos (212))
+ C,,,(6—X cos (2m2x) cos 21y cos 21z) + Che4(3 — Z cos (2m2x) cos (2n2y))
+ Cy10(6 — cos (2m3x) cos (27y)) + Oy, (1 — cos (2122) cos (2m2y) cos (2n22)) + ... .

For a primitive cubic lattice the first approximant is:
cos (2nx) 4 cos (2my) 4 cos (2mz) = 0.

This later expression is very convenient for generating a close approximation to the
P-surface. Townsend et al. (1992) have used it and other such expressions as
manifolds on which to construct irregular sphere packings which can represent (after
removing the spheres at the centres of rings of 5, 6 or 7 spheres) the graphite network.

Random surfaces can be constructed by adding sine waves of random amplitude,
direction and phase, but all with the same wavelength, and then taking the nodal
surface where the value of the function is zero. We have applied stereological
methods to estimate statistically the area and curvature of such surfaces which are

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 2. A possible graphite structure based on the P-surface, where the network of hexagons
is curved by the introduction of octagons (stereo-pair of two unit cells).

available for decoration by graphite nets. The area per unit volume is close to that
of regular periodic minimal surfaces with the same characteristic length.

10. Graphite structures with negative gaussian curvature

By decoration of these various infinite two-dimensional manifolds (just as the
sphere has been decorated with closed networks) several related structures have been
proposed for graphite nets. These are mostly based on the P, D and G surfaces (the
first two due to Schwarz (1890) and the last, the gyroid, discovered by Schoen (1970).
However, many other surfaces (perhaps 50) are available for consideration. Some fit
naturally with hexagonal sheets and others with sheets of square or lower symmetry.
In general, the P, D and (f surfaces are the least curved from planarity. Surfaces
parallel to the surfaces of zero mean curvature have lower symmetry than those with
H = 0. When decorated with graphite nets the symmetry may be further lowered to
that of a sub-group of the symmetry group of the surface itself.

(@) Mackay and Terrones

We have successfully built models of the P, D, ¢/ and H surfaces (by computer
graphics and physically by using three-way joints and connector tubes to represent
the graphite net) (Mackay & Terrones 1991) (figures 2 and 3). Triangular patches of
various sizes of the graphite network with angles 90° 30° and 45° can be joined so that
the 45° vertices combined to give rings of eight carbon atoms. In the actual
structures these sit appropriately on the saddle points of highest local gaussian
curvature. Given the basic patch, the asymmetric unit of pattern, this can be twisted
to give either the P, the D or the ¢ surfaces.

In Mackay & Terrones (1991) 144 points of the type 8.6% and 48 of the type 6° make

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 3. A decoration of the /-WP surface (stereo-pair of half of the Im3m unit cell.)

up the 192 vertices per cell. In each case any number of 6 points may be added or
removed without changing the vertex excess. We might also consider points of the
type 82.5 of which 80 per cell of genus 3 would be needed plus any number of 6% points
but this would be unrealistic for graphite.

The polyhedron corresponding to the Neovius surface has the same arrangement
of points as that for the infinite semi-regular polyhedral surface 6.4® discussed above,
but the spaces between the points are differently filled with polygons so that each of
the 48 points per cubic cell has the configuration of 8.4.8.6 and this leads to a surface
of genus of 9. This surface has two kinds of flat points and is thus not ‘regular’
(Mackay & Terrones 1991). 12 tubes in the [110] directions connect cavities.

The [-WP surface (in Schoen’s (1970) idiosyncratic notation) is an unbalanced
cubic surface where eight tubes in the [111] directions connect cavities. It is close in
shape to the Fermi surface of the rcc metals Cu, Ag, Au. In our decoration (figure
3) (with rings of 8, 6 and 5 atoms) the symmetry is reduced from that of the surface,
which is Im3m, by the replacement of 4-fold axes by 2-folds. There are 228 hexagons,
48 octagons and 24 pentagons per cubic cell. The pentagons can be introduced in
several ways.

(b) Lenosky, Gonze, Teter and Klser

Lenosky et al. (1992) have a somewhat different combination where 216 vertices of
the type 7.6% and 48 of the type 6% add to give the vertex excess of 8n (figure 4). The
first two of their surfaces are parallel to the P and D periodic minimal surfaces and
divide space into two unequal regions (and are thus less symmetrical than the
periodic minimal surfaces). It would be possible to arrange two identical parallel
surfaces to be 3.4 A apart by increasing the size of the asymmetric patch
appropriately. The atomic positions have been refined and physical properties of the
structures have been calculated. The asymmetric patches contain heptagons rather
than octagons to introduce the negative gaussian curvature and such structures
are found, by calculation, to be energetically more favourable than spherical
buckminsterfullerenes.

Lenosky, Gonze, Teter and Elser propose the name schwarzites, in memory of
H. A. Schwarz, for this category of graphites with non-positive curvatures. Since
the name seems vacant as a mineral name, we commend the proposal.
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122 A. L. Mackay and H. Terrones

Figure 4. Four unit cells of a possible graphite structure where the introduction of heptagons
enables the graphite net to be mapped on to a surface parallel to the P-surface (Lenosky et al.).

We are much indebted to Lenosky for calculating, on the same basis, energies of
our structures, those of Vanderbilt and Tersoff and of his own (table 1), so that their
stabilities can be compared with that of Cy,. It will be seen that there are several
structures with energies less than that of Cy,.

Townsend et al. (1992) later produced several similar structures where the network
lies in the minimal surface. In particular, they have also constructed random surfaces
and have made a good prima facie case that seaweed-like amorphous graphite
actually exists. Experimental electron diffraction scattering corresponds well with
that calculated from minimal surface structures.

(¢) Vanderbilt and Tersoff

To make a surface of genus 3 (as for the P, D, and ¢ surfaces) the excess vertex sum
for the vertices within the unit cell should be 8r. This is given by 56 vertices of the
type 7% and is the surface from which Vanderbilt & Tersoff (1992) began to develop
their model. If this tessellation is now truncated, that is, a hexagon is placed at each
vertex, the tessellation becomes 7.6% (with all the vertices still equivalent to each
other). To make up 8n 168 vertices are needed. This number gives a more relaxed
structure than that using heptagons alone. The process is exactly parallel to the
truncation of the regular dodecahedron, with vertices 5%, to give the truncated
icosahedron 5.6% of Cg,.

The surface is one parallel to the D-surface, so that the two sub-spaces are not
equivalent. A tetrahedral joint is built out of 84 atoms in hexagons and heptagons
so that each point is a member of two hexagons and one heptagon (62.7). There are
thus 2 x 84 atoms per primitive unit cell with space group Fd3 and 8 x 84 = 672 per
cubic unit cell with @ = 21.8 A (assuming graphite-type bonds).

The density is expected to be 1.29 ¢ em™ and the authors calculate the energy of
formation to be 0.11 eV atom™ as compared with 0.67 eV atom™ for Cy.
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Figure 6. The corresponding P-surface (O’Keefe ¢f al.) (the stereo-pair shows 4 unit, cells of
space-group Im3m, each with 24 atoms).

(d) O’Keefe, Adams and Sankey

O’Keefe et al. (1992) have reduced the asymmetric patch (in the minimal surface)
to the minimum and have examined the corresponding P” and D surfaces (presumably
the related G surface could also exist). These are significant in that all the atoms can
now be equivalent and the vertices are 6.8%. The 6.8 D structure is particularly
interesting and had been reported before by Gibson, Holohan and Riley and by Wells
(1977) and can be referred to as ‘polybenzene’. It has a considerably lower energy
than that of Cg,, but that for the 6.8% P form is a trifle higher. The densities are
much greater than for the other proposed surfaces. Figure 5 shows the P-surface and
figure 6 the corresponding D-surface.

It is important to realize that not all three-connected nets in three-dimensions lie
on surfaces. A great variety of both nets and surfaces has been described, somewhat
cryptically, by Wells (1977).

Altogether, the variety of possible structures and their low energies compared with
that of Cy,, together with the measurement by Elser ef al. of an electron scattering
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124 A. L. Mackay and H. Terrones
Table 1. Comparison of various hypothetical structures
structure p AE a/A N spacegroup
1 P216 bal. 1.1 0.17 15.7 108 x 2 Ta3 (?)
2 D216 bal. 1.16  0.16 15.50 (24.6) 216 (x4) Pn3 (Fd3?)
3 random 1248 1.26  0.23 -— — —
4 G216 bal. 1.18  0.17 — 216 Ta3d
5 D7 par. .15 0.18 24.7 216 x 4 Td3m
6 P7 par. 1.02  0.20 16.2 216 Pm3m
7 P8 bal. 1.16  0.19 14.9 192 Im3m
8 D8 bal. 1.10 — 15.16 (24.09) 192 (x 4) Pn3m
9  G8 bal. 1.12 — 18.94 192 x 2 Ta3d
10  I-WP 1.06 — 24.09 744 143m
11 D7 par. 1.28  0.22 21.8 168 x 4 Fd3
12 6.8%P bal. 2.04  0.488 7.770 48 Tm3m
13 6.8°D bal. 2.19  0.208 6.033 24 Pn3m
ree Oy, 1.71 0.42 14.12 60 x 4 —
diamond 3.52  0.02 3.5595 2x4 Fd3m
graphite 2.28 0 a = 2.460

p is the calculated density in g cm™3.

AFE is the total energy relative to graphite in eV atom™.

@ is the cubic unit cell size.

N is the number of ¢ atoms per unit cell (the rcc cell contains 4 primitive cells and the Bce
cell 2).

bal. indicates a balanced surface, where the two subspaces are congruent; par. marks a less
symmetrical surface parallel to this.

1,2,3,4,5, 6 are from Lenosky et al. (1992) and Townsend et al. (1992). They contain heptagonal
rings.

3 is a random covering of the D-surface type with a = 42.9 A with 1248 atoms. In this unit there
are 38 pentagons, 394 hexagons, 155 heptagons, 12 octagons and 1 nonagon.

7, 8,9, 10 are due to Mackay & Terrones (1991) for C—C taken as 1.42 A. They contain octagonal
rings. (The /-WP surface contains also pentagons: it is not balanced.)

The value 14.9 A was obtained by Lenosky after refinement from our model.

11 is due to Vanderbilt & Tersoff (1992). It uses heptagonal rings.

12 and 13 are due to O’Keefe et al. (1992) and contain octagonal rings. Their positional
parameters for the P structure are = 0.3103 and z = 0.0867 and for the D structure, x = 0.3364.
13 is ‘polybenzene’.

pattern, strongly indicate the possible existence of graphite surfaces of negative
gaussian curvature, rather like seaweed, which, only under rather special cir-
cumstances, such as production by charring of a ordered liquid crystal, might be
three-dimensionally periodic.

Table 1 collects data from various authors. Note that the space group of the
symmetrical D-surface (symmetry of cuprite or ‘double diamond’, containing two
tetrahedral joints in opposite orientations) (in which atoms may be embedded less
symmetrically (as in 2) is Pn3m. If the structure is made less symmetrical (the
diamond structure) by taking the parallel surface, then the contents of the unit cell
are multiplied by 4 and the space group becomes Fd3m (containing 4 primitive
rhombohedral cells in each of which there are two tetrahedral joints in opposite
orientations). The cubic cell side is multiplied by 2. If atoms are embedded less
symmetrically, then the space group becomes a subgroup of the space group of the
surface.
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Figure 7. A tessellation of the hyperbolic plane I1* by regular heptagons. The 7.6* tessellation
(thicker lines) is obtained by truncation, a hexagon replacing each three-fold vertex. Polygons are
connected as they are locally in Vanderbilt and Tersoft’s surface.

11. The hyperbolic plane, H>

The hyperbolic plane (called H?, the surface of the sphere being S?), has a constant
negative gaussian curvature. Regular and irregular tessellations of this surface by
polygons can represent topologically the local connectivities of real space polygonal
and continuous surfaces which have everywhere non-positive curvatures. Just as a
closed spherical surface can be covered by a planar pattern by regular disclinations
(where a sector is cut out and the cut edges are joined) so a hyperbolic surface can
be made by regularly inserting a sector. For example a regular net with hexagonal
symmetry can have sectors inserted to make sevenfold symmetry.

In particular, the regular tessellation of H* by heptagons (figure 7) (Mackay 1986)
can be truncated to give the tessellation 7.6% which corresponds to Vanderbilt and
Tersoff’s surface and is the least curved of the regular tessellations. Further
truncations would increase the ratio of hexagons to heptagons, but all vertices would
then be no longer equivalent to each other. When we attempt to execute the H?
tilings in real space the curvature causes the surface to fold like sea-weed (as fucus
letuca) since more area is produced within a given radius than is appropriate for a
planar tiling (Thurston & Weeks 1984). After a certain number of units have been
added, the surface can be closed on itself in various ways, periodically or irregularly.
Just as in producing cylinders, one vector in the plane tessellation is identified as
corresponding to circuits of the cylinder so, in the hyperbolic plane, cycles can be
found in several directions.

12. Transformations and kinematics

There are many topics for further investigation.
We have referred above to the promise of the Bonnet transformation in describing
actual martensitic transformations. As a generalization of the catenoid/helicoid
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transformation at constant gaussian curvature (here zero), it has long been known
that any surface of revolution can be bent into a screw surface. Other transformations
have been developed by Gackstatter and by Kenmotsu and by Terrones (1992)
which, although requiring some distortion of the surface, produce transformations,
such as the turning of a slit sphere inside out, which may be of relevance, if not for
graphite, then for the phenomena of vesicles, such as gastrulation. Computer
graphics have much facilitated these applications. The mechanism of the coalition of
two Cg, or C,, particles (Yeretzian et al. 1992) may require some such visualization
and may connect with the possible processes of formation of minimal surfaces.

The trajectories of rays, representing particles or waves, inside one of the periodic
minimal surfaces are of great relevance in considering the behaviour of, for example,
photons, reflected inside such a labyrinth. By following these trajectories one can
observe what regions, if any, of the space are preferentially visited. After kinematics,
dynamics must be investigated. The surfaces discussed above have many applications
in fields other than that of graphite.
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Discussion

P. W. FowLer (University of Exeter, U.K.). Please comment on finite analogues of
your structures ? We have discussed previously the idea of making a ‘ Russian doll’
fullerene in which one fullerene is connected by tunnels to an outer shell. The matrix
seems to comply with this.

A. L. Mackay. We have carried out model building experiments and you can indeed
close off tubes with domes, more or less at will.

P. W. FowLEr. Have you had the same experience as us? If you leave a model
around it bursts spontaneously. I think the steric strain therein is very great.

A. L. Mackay. Our open models are surprisingly strain-free, given that you have
equal bond lengths and 120° connections.

P. W. FowLgRr. If you make a model with icosahedral symmetry I believe you will
find that you will be left with plastic fragments.

A. L. Mackay. Yes, if you use the same materials to build Cg, it is clearly strained.
But I should say that the definition of a minimal surface is that it has zero mean
curvature; i.e. you can say that either the divergence of the normal is zero, or that
it has zero splay. Thus if you take the p-orbitals in one direction they are spread out,
whereas in another they are compressed or folded in. So the whole evens out. Minimal
surfaces have, characteristically, zero splay energy. This is an argument in its favour,
whereas spheres are splayed in both directions.
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igure 1. The P-surface, found by H. A. Schwarz. If the two sides are the same, the space group 1s
m3m: if different, then Pm3m. It corresponds closely to the zero equipotential surface in CsCl.
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